#### Assessment of functional vision in healthy infants and children

Lea Hyvärinen, MD, PhD Professor h.c., Rehabilitation Sciences, University of Dortmund Senior Lecturer, Developmental Neuropsychology, University of Helsinki

Hong Kong 10.1.2012

#### Assessment of functional vision in healthy infants and children

Lea Hyvärinen, MD, PhD Professor h.c., Rehabilitation Sciences, University of Dortmund Senior Lecturer, Developmental Neuropsychology, University of Helsinki

Hong Kong 10.1.2012

### "Functional" and "healthy"

#### Functional:

Visual acuity measured in ways that describ visual functioning in every day tasks of infants and children in a defined cultural situation and age.

Healthy: An infant and child whose functioning is not restricted by a disease or trauma: Diabetes, retinitis pigmentosa, amblyopia, retinoschisis



# Visual functioning

Management of low vision in children Report of a WHO Consultation

(3)

We use vision for: Communication and interaction

Orientation and planning moving

Numerous daily tasks

Demanding near tasks like reading and writing

### Visual functions

- Visual acuity as optotype and grating acuity
- Visual field, peripheral and central
- Contrast sensitivity
- Colour vision
- Visual Adaptation to luminance levels
- Motion perception
- Visual processing functions
- Ocular motor functions, scanning



#### Variation of visual acuity values

Test Child's age Communication Tester

Standardised measurement

# Before measuring VA

- Refraction
- Binocularity
- Strabismus, altern.
- Stereovision
- Accommodation

# Binocularity tests - fusion



Worth 4-dot test

### Stereovision



#### Lang test

![](_page_8_Picture_3.jpeg)

![](_page_8_Picture_4.jpeg)

#### 9 months

### Visual acuity

Detection acuity – small objects, "where"function – grating acuity " " [ Resolving orientation of long lines (gratings) ]

**Recognition acuity** – optotype acuity

Hand movements, light perception/ projection (no "counting fingers", fingers are not standardized)

![](_page_10_Picture_0.jpeg)

#### WORLD HEALTH ORGANIZATION

Prevention of Blindness & Deafness

CONSULTATION ON DEVELOPMENT OF STANDARDS FOR CHARACTERIZATION OF VISION LOSS AND VISUAL FUNCTIONING

Geneva, 4-5 September 2003

![](_page_11_Picture_0.jpeg)

### WHO/PBL/03.91

![](_page_11_Picture_2.jpeg)

Logaritmic design Distance & near VA, same optotypes Distances 6m (**4m**) and 40cm; children 3m **the distance to fit the needs of the child** 

**NOT** to point at the optotypes. Luminance between 80 and 160 cd/m<sup>2</sup>

# Visual acuity

- Measurement of visual acuity using optimal refractive correction that the child can use
- in standard luminance + optimal luminance
- using standised tests
- using varying postures when needed

#### Optotype tests

Single optotype tests Line tests Crowded tests

Letters, numbers, paediatric symbols

Young children and Children with different abilities

# Single LEA Symbols tests

#### the earliest tests for measurement of VA

![](_page_15_Picture_2.jpeg)

LEA Playing Cards

$$\begin{bmatrix} \circ & 1 & O \end{bmatrix} O \begin{array}{c} 2 & 0 \\ \hline D \end{array} \begin{array}{c} 3 \\ \hline \Box \end{array} \begin{array}{c} 4 \\ \hline 0 \end{array} \begin{array}{c} 0 \end{array}$$

LEA DOMINO Cards for training of amblyopic eyes

![](_page_15_Picture_6.jpeg)

LEA Single Symbols Book

![](_page_15_Picture_8.jpeg)

LEA Symbols Flash Cards

### Consept "same" in measurement of VA

![](_page_16_Picture_1.jpeg)

#### with colours

![](_page_16_Picture_3.jpeg)

#### with B & W forms

![](_page_16_Picture_5.jpeg)

comparing concrete object with picture

Playing Cards

![](_page_16_Picture_8.jpeg)

![](_page_16_Picture_9.jpeg)

# Learning to match forms

![](_page_17_Picture_1.jpeg)

#### Naming symbols monocular testing

![](_page_18_Picture_1.jpeg)

# Playing cards in training

![](_page_19_Picture_1.jpeg)

# Visual acuity

- measure distance of the card (with your arm)
- record the M-size of the symbols
- visual acuity = distance (m) / M-size

#### VA - line test

| DISTANCE EQUIVALEN<br>FOOT METER                                                                                  | VIS Developed by Lea Hydriver, M.D.<br>POR TESTING AT 16 INCHES (46 CM)                                                                               | LETTER SIZE DECIMAL                                                                                | DISTANCE EQUIVALENTS<br>FOOT METER Developed by Last Hydroxa, M.D.<br>FOOT METER 50% CROWDING 25% CROWDING 25% CROWDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20400 6120                                                                                                        | $\bigcirc \Box \cup \Box \cup \Box$                                                                                                                   | 8.0 M .05                                                                                          | $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20020 695                                                                                                         |                                                                                                                                                       | 6.3 M. 263                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20250 675                                                                                                         | $\heartsuit$ $\Box$ $\circlearrowright$ $\bigcirc$ | 5.0 M .08                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20200 640                                                                                                         |                                                                                                                                                       | 4.0 M .10                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20/160 6/48                                                                                                       |                                                                                                                                                       | 3.2 M .12                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20125 638                                                                                                         | 00000                                                                                                                                                 | 2.5 M .16                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20100 6/30                                                                                                        |                                                                                                                                                       | 20M 20                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20/80 6/24<br>20/83 6/19                                                                                          |                                                                                                                                                       | 1.6 M .25<br>1.25 M .32                                                                            | 2050 015 00 0100 010 010 010 010 010 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2050 915<br>2049 612<br>2042 69 5<br>2022 69 5<br>2022 66 5<br>2020 66<br>2016 84,8<br>2012,5 83,8<br>2012,5 83,8 |                                                                                                                                                       | 10 M 40<br>AGM 50<br>AGM 50<br>AGM 50<br>AGM 10<br>32 M 10<br>32 M 15<br>32 W 15<br>32 W 15        | SD212 SD323 SD324 SD344 SD3444 SD344 SD344 <t< th=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lamant in Malla 144<br>weeks feed 2                                                                               |                                                                                                                                                       | COOD-LITE®<br>builded waar blaat haap<br>mar biskering mark blaat haap<br>waaraa bhaat<br>#2508800 | the constant of the constant |

Spasing needs to be recorded

### Line tests for the 3-4 year old

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

#### Visual acuity, line tests standard tests for assessment

![](_page_23_Picture_1.jpeg)

### Single, line, crowded

![](_page_24_Figure_1.jpeg)

#### LEA Symbols charts on lightbox

![](_page_25_Picture_1.jpeg)

#### LEA Numbers chart on the small lightbox

![](_page_26_Picture_1.jpeg)

#### Test at the eye level

![](_page_27_Picture_1.jpeg)

# Screening Near Test

| DISTANCE EQUIVALENTS<br>FOOT METER |                      | LETTER SIZE DECIMAL |              |                |           |  |  |  |
|------------------------------------|----------------------|---------------------|--------------|----------------|-----------|--|--|--|
| 20400 6120                         | 仚                    |                     |              | C              | 80 M .060 |  |  |  |
|                                    |                      |                     |              |                |           |  |  |  |
| 20220 695                          | 6 0 C                | AOM 010             | 80 20296 675 | <u>∩</u> □ 0 ( | 50M .090  |  |  |  |
|                                    | 0000<br>10125 638 25 | O<br>M 0.16         |              | 00100 ene 201  | C 0.00    |  |  |  |
| ikaanin in in Tari Ku<br>Waximaa   | 仚                    |                     | 0            | 0              | #252000   |  |  |  |

![](_page_29_Picture_0.jpeg)

### Visual Acuity

Detection acuity, objects Grating acuities Recognition, optotype acuities near & distance **Optimal reading acuity** 

#### Text size and spacing for the best reading speed and duration

car Daddy school mine yesterday, 12 point

car Daddy school mine yesterday

car Daddy school mine yesterday, 2 point extra spacing

car Daddy school mine yesterday

car Daddy school mine yesterday, 18 point

car Daddy school yesterday, 28p, 0.3p ex

# Daddy school yesterday,

36point, 2p extra spacing

# Detection Acuity

# **Detection acuity**

• Question: "Where", not "What"

- The size of the object
- The background/ contrast
- The distance
- Doctor can calculate the size of the object as angular size.

![](_page_33_Picture_6.jpeg)

# Fixation small object/30s, penlight

![](_page_34_Picture_1.jpeg)

#### Detection Acuity small objects & GrA as detection acuity

![](_page_35_Picture_1.jpeg)

Teller Acuity Cards

Lea Gratings
#### Grating Acuity as detection acuity



Grating acuity values MUST NOT be converted to optotype acuity values

#### Variation of VA values

- Use of several fixation areas
- Changes in the retinal function, oedema
- Variation in brain functions:
  - wakefulness
  - medications
  - environment
  - communication

### **Measurement of VA**

- both eyes open
  - binocular or VA of the dominant eye
- monocular VA << covering an eye
- freely alternating >> preferred eye

## Summary on VA

- Several visual acuities:
  - single, line, crowded
  - high and low contrast, 2.5% convenient
- Technique: line test, ask which is the first optotype on each line until error or hesitation, next test the previous line

## Summary on VA

- Several visual acuities:
  - single, line, crowded
- Technique: line tests,ask which is the first optotype on each line until error or hesitation
- Test the previous line
- Pointing helps fixation, line test without pointing; as a second test try with pointing
- Do not repeat, do not reveal errors
- Accept any name for symbols
- Always report the name of the test, distance, luminance

• Rowan Candy



## Visual field







## Binocular visual field



## Effect of strabismus



#### **Goldmann perimeter** interpreter explaining the test to a deaf child





#### Retinitis pigmentosa early visual field changes





#### Automatic v. Goldmann Retinitis pigmentosa, boy at 11 years of age



## Goldmann perimetry

Low luminance level, 10 cd/m2 Low speed of the stimulus "Absolute" scotomas are not absolute

#### Coloboma monocular versus binocular visual field



Defect in the lower part of the retina causes loss of visual field in its upper part. If a child is binocular, the visual fields are fused to a single field.



## Sheridan ball test



## Flicker Wand



## Perimetry with Flicker Wand



## Size of visual field





Flicke 10Hz

## Right hemianopia?



### Borders of visual field



#### Normal

Right sided hemianopia

58 Normal response

## Perimetry with Vice Versa



Ball on stick

Vice Versa

## ViceVersa



#### Motion perception+Visual field diagnostic play situatons



#### **Retinocalcarine & tectal pathway**



## Lesion in the posterior pathway

#### Näköradan takaosan vaurio



#### Plasticity in relative scotomas

• Hemianopia:

 In scotomatous area there can be motion perception that cannot be recorded in Goldmann perimetry.
 Training may improve function in hemianopia, a new challenge in rehabilitation.



#### Measurement of flicker sensitivity Välkeherkkyyden mittaus





 $10^{3}$ 

first measurement in the hvf first measurement in the nhvf X



Luminance flicker measurement

a session once a month
13 sessions within a year

# Flicker sensitivity in the blind hemifield may become normal.



## Lesion in the posterior pathway

#### Näköradan takaosan vaurio



#### Improvement of sensitivity

measurements on 3 distances from fovea at corresponding meridians





Stimulus on the left side of the fixation, i.e. in the left visual field.. Activity in the right occipital cortex.

Stimulus on the right side of the fixation, i.e. in the RIGHT visual field.. Activity in the RIGHT occipital cortex.

Functions from the damaged left side of the brain have moved to the normal right side.
### Cell distribution in retina Visual acuity in the visual field



# Retinoschisis





# Contrast sensitivity in retinoschisis

note the good normal function at low contrast levels



# Goldmann field

#### in mild retinoschisis



### Flicker sensitivity

#### nearly normal findings in the fovea, normal at 30 deg eccentricity



## Retinoschisis



The boy whom the camera follows was one of the best players of the team , has normal driving licence and has served a normal military service, VA 0.4, 6/15.

## Retinoschisis – very limited visual field



# Tea break

# **Colour vision**



# **Colour vision**

### Ishihara test:





Confusions by decreased contrast sensitity



# Waggoner test





# Light colour temperature > 6500 K



# **Colour vision**

#### SCREENING

- Ishihara
- Waggoner
- HRR

ASSESSMENT Farnsworth D-15 LEA Panel 16





CONCLUSIONS AND RECOMMENDATIONS:

### **Colour Vision Game**





## Visual Adaptation



CONE Adaptation test

### Filter lenses



Locally tinted filter lenses require good workmanship.

# Coherent Motion – 'Pepi'

www.lea-test.fi



#### **MOTION PERCEPTION**

### Perception of biological movement



In most activities visual information is in motion: either the object moves. The observer moves or at least the eyes move. How does the world look like without movement?

### Visual perception of movement

#### • Communication:

lip reading, sign language, fingerspelling

- Spatial orientation and moving swings, ball games, traffic, relative movement
- Activities of daily life boiling not seen, people, animals, cars moving fast
- Near vision tasks

movement helps perception of pictures

**Contrast sensitivity** optotype and grating tests

### Information at low contrast

Communication low contrast information in motion

Orientation in space

Daily activities (ADL)

Low contrast in texts and pictures

### Contrast sensitivity the better the lower contrast is perceived



### Contrast sensitivity the better the lower contrast is perceived



### Three children with VA 0.3, 6/18



### CS-curves, 3-4 and 5 yrs



## Contrast sensitivity

- 40 healthy children, 34-59 months of age
- binocular testing possible with every child
- monocular testing possible in 24/26 children older than 44 months
- children reach adult like contrast sensitivity at the age of three years: at 2.5% contrast all children had a visual acuity of 0.3 and half of the group older than 44 months had that visual acuity at 1.2% contrast during the first measurement with the LEA Symbols 10M test.

# Contrast sensitivity curve versus the point of contrast sensitivity maximum



#### Pelli-Robson Mars

# Low contrast optotype tests



translucent tests for lightbox LEA Symbols & Numbers screening tests LEA Symbols & Numbers

# LEA Symbols low contrast tets



## LEA Numbers low contrast tests



25%, 10%, 5%, 2.5% and 1.2% contrast

### Translucent low contrast test at 2.5% contrast on the small lightbox



### Contrast sensitivity

In normal visual system low contrast visual acuity value at 2.5% contrast is close to one half of visual acuity at full contrast.

### CS slopes of a group of children with CP



Most children function at 2.5% contrast and most slopes have the usual declination, some are steep and a few flat.
## Low contrast 10M optotypes



## Cambridge Low Contrast Gratings





## Low Contrast Grating Acuity



To be able to measure at contrast levels 10%, 2.5% and 1.2%, three pairs of gratings are needed: 0.5cpcm and 8cpcm at 10%; 0.scpcm and 4cpcm at 2.5% and 1.2% contrast. To get the cpd-values we need nomograms.





### Contrast sensitivity depicting visual functioning





#### Incipient cataract

#### Retinoschisis

## Contrast sensitivity & Infants

### Vision for communication Hiding Heidi test





### Vision for communication Hiding Heidi test





#### Low contrast information & image quality Lamberto Maffei 1981



Visual information for percetion of round forms and in communication is NOT transferred by fine lines (high VA) but broad lines (low VA) at low contrast.

Nobody whispers to a hearing impaired child. Nobody whispers to a hearing impaired child.

## Why do we whisper visually to visually impaired children.

# Discussion

## Lunch break